Seminar – CMOS-compatible materials and processes for spintronic applications in 300mm R&D

On Wednesday October 23 at 14:00 we have the pleasure to welcome Maik Wagner-Reetz from Fraunhofer IPMS, Dresden. He will give us a seminar at CEA/SPINTEC, Bat 1005, room 445 entitled :

CMOS-compatible materials and processes for spintronic applications in 300mm R&D

Spin-based implementations like e.g. Magnetic Random Access Memory (MRAM) or Racetrack Memory (RTM) are possible approaches to overcome fundamental scaling limits and to increase storage density. The charge-to-spin-conversion and vice versa is a key element in spin-based computing systems and is addressed in recent research. Spin-Orbit-Coupling phenomena play a vital role in both, Spin-Orbit-Torque MRAM and RTM, where new materials with high Spin Hall Angles are needed. Therefore, several materials ranging from (heavy) metals to binary compounds could be considered, like e.g. CoSi, TaP or W3Ta. A CoSi process sequence including wet chemical silicon oxide removal, Cobalt CVD deposition with annealing is available. For TaP and W3Ta a CMOS-compatible thin film process is not yet available. The CMOS-compatible compounds are theoretically predicted to have high Spin Hall Angles. Several open questions, like e.g. influences of interfaces or grain boundaries have to be addressed in order to pave the way for new unconventional approaches.

In this talk we want to focus on the CMOS-compatible fabrication and analytics of such thin films. Our new 300mm MRAM sputter system with mixed protocol zone environment is a key to get access to state-of-the-art materials and beyond. Besides the material fundamentals, we also focus on integration issues, like e.g. MTJ scaling to sub 50nm structures.

Copyright © 2015 - - OXIWIZ - Privacy Policy

Scroll to Top