Our team aims at manipulating spins currents in nanostructures, in particular in quantum materials with Dirac fermions, such as topological insulators or Weyl semimetals, or at oxide interfaces. Some important aspects of future spintronics devices, such as the efficient spin-charge interconversion at interfaces or the ballistic transport of spin states for quantum interconnects, are studied by magneto-transport measurements.

Research topics

Spin-Charge interconversion

Nanostructure made of a horizontal stripe of spin Hall effect material, with two vertical ferromagnetic electrodes to probe the spin accumulation or to inject spin currents. The nanostructure allows probing both the charge-to-spin (left) and spin-to-charge (right) conversions due to the spin-orbit coupling.

Control of magnetization

Nanostructure possessing NiFe nanowires, in which magnetic domain walls can propagate. When located at the vicinity of the Cu nanowire, the domain wall can be used to inject or detect pure spin currents.

Ballistic spin currents

The ballistic surface Dirac fermions in a 3D topological insulator propagate on the cristal faces of a quantum wire. The well-defined cross section gives flux-periodic Aharonov-Bohm oscillations of the resistance, due to quantum interference, for a magnetic induction applied parallel to the nanowire. The spin-helical surface modes offer new possibilities to build quantum spintronics devices of simple geometry, either for dissipationless long-range interconnects or local spin filtering controled by a magnetic field or an electrostatic gate. 

The team

Former members


  • Yu FU (2015-2016)
  • Juan Carlos ROJAS SANCHEZ (2010-2013)
  • Yu FU (2015-2016, 2018-2019)


  • Andrei Mihai (2006-2009)
  • Van Dai Nguyen (2009-2012)
  • Piotr Laczkowski (2009-2012)
  • Williams Savero-Torres (2011-2014)
  • Pham Van Tuong (2014–2017)
  • Gilles Zhand (2014-2017)
  • Toshiki Gushi (2016-2019)
  • Paul Noël (2016-2019)
  • Aoyu Tan (2018-2021)
  • Valentin Labracherie (2017-2021)
  • Maxen Cosset-Cheneau (2019-2022)
  • Sambit Ghosh (2019-2022)


  • Williams Savero-Torres (2011)
  • Gilles Zahnd (2014)
  • Paul Noël (2016)
  • Maxen Cosset-Cheneau (2018)
  • Timothé Faivre (2009)
  • Hélène Durand (2005)
  • Andrei Mihai (2006)
  • Carl Naylor (2011)
  • Quentin Thiburce (2013)
  • Clément Nguyen (2013)
  • Sarah Ferry (2009)
  • Cédric Mannequin (2008)
  • Quentin Riffard (2010)
  • Willy Lim (2016)
  • Matthieu Praquin (2018)
  • Marie-Paule Okinda (2020)


  • Sara Varotto (2019-2020)


  • ANR Contrabass (2020-2023)
  • ITN H2020 Spears (2021-2024)
  • ANR Oiso (2017-2021)
  • ISP Idex UGA DOMINO (2018-2021)
  • FET Proactive H2020 Tocha (2019-2023)
  • IRS Idex UGA (2017-2020)


  • Tsukuba University (Japan)
  • Unité mixte de Physique CNRS/Thalès (Orsay)
  • Néel Institute (Grenoble)
  • Leti (Grenoble)
  • Institut Jean Lamour (Nancy)
  • Leibniz Institute IFW (Dresden)
  • Technical University (Dresden)

Recent news

  • More topology in quantum electronic circuits (May 13th, 2024)More topology in quantum electronic circuits
    In the framework of the French-German laboratory association between SPINTEC and the IFW Dresden (CNRS International Research Project « SPINMAT »), and in collaboration with the C2N institute and the university of Würzburg, a novel ...
  • Seminar – Topological Spin Transport in Quantum Materials and Entanglement (April 15th, 2024)Seminar - Topological Spin Transport in Quantum Materials and Entanglement
    On Monday May 13, 2024 at 14:00 we have the pleasure to welcome Prof. Stephan ROCHE (ICREA, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST). He will give us a seminar entitled : Topological Spin ...
  • Start-up Nellow wins 1st prize at the HEC Challenge + Forum (November 29th, 2023)Start-up Nellow wins 1st prize at the HEC Challenge + Forum
    The start-up Nellow, ​​​a joint research unit from IRIG/SPINTEC and the CNRS/Thales laboratory, was awarded the 1st prize at the HEC Challenge+ Forum. The start-up develops ultra-low-power components for memory, logic and AI. Nellow is a ...
  • Non-volatile electric control of spin-orbit torques in an electron gas (August 01st, 2023)Non-volatile electric control of spin-orbit torques in an electron gas
    Spin-orbit torques (SOTs) have the potential to manipulate magnetization using in-plane current, and two-dimensional electron gases (2DEGs) provide a highly efficient spin-to-charge current interconversion. This paper reports the non-volatile electric-field control of SOTs in an ...
  • Best poster award at INTERMAG 2023 (May 17th, 2023)Best poster award at INTERMAG 2023
    Théo FROTTIER is among Best Poster Award winners at INTERMAG 2023 Conference taking place in May 2023 in Sendai, Japan. The title of the poster prepared with Aurélie KANDAZOGLOU, Cécile GREZES of Topological Spintronics team ...


[ All | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 ]

Copyright © 2015 - - OXIWIZ - Privacy Policy

Scroll to Top