MRAM MEMORIES

Thematic overview

 

Magnetic Random Access Memories (MRAM) is a non-volatile memory technology, where information is stored by the magnetization direction of magnetic electrodes, very similar to computer hard-disk drives. The goal for MRAM memory is to simultaneously achieve high-speed read/write times, high density and unlimited cycling compared to other existing and emerging technologies.

 

Our group is developing advanced MRAM cell concepts patented at Spintec. The concepts are based on the use of temperature to reduce power consumption and increase the stability of the stored information. These ideas go beyond the conventional MRAM approach. The naturally occurring temperature increase during the write step is not lost, but is instead used to achieve the seemingly opposing goal of lowering the power consumption and increasing the thermal stability in the operating temperature range. Our group fosters young and experienced researchers developing/applying their expertise in the field of MRAM.

Sans titre2

Questions to be addressed

 

Our main research axis is to use the naturally occurring temperature increase during the write step, when a current flows through the magnetic tunnel junction. The heating is used to go above a temperature threshold, making it possible to write the storage layer magnetization. This principle has been applied to in-plane magnetization cells using a storage layer pinned by an anti-ferromagnet and recently to perpendicular anisotropy cells. Our group’s goal is to demonstrate the proof-of-concept and then improve MRAM cell properties.

 

Our work involves the development of magnetic material systems, nano-fabrication (20-200nm cells), characterization of devices (magnetic & electrical) and simulation of the device behavior. Our activity in these vast fields is as follows;: On materials research, we are developing magnetic tunnel junctions with in-plane and perpendicular magnetic anisotropy. New electrode stacks having the material properties required by each specific concept need to be integrated in magnetic tunnel junctions, while achieving high levels of TMR signal. For the characterization of each concept we determine the write window parameters in terms of magnetic field, power consumption and magnetization reversal dynamics. Macrospin and micromagnetic simulation provide a better physical understanding of the system properties and the possibilities for optimization.

Projects

ANR EXCALYB – Perpendicular Anisotropy Materials for High-Density Non-volatile Magnetic Memory Cells

Crocus R&D – Thermally assisted MRAM

Samsung SGMI

Partners

Crocus Technology

Institut Néel

SP2M/NM

SAMSUNG

Applied Materials

SINGULUS

 

Recent news

  • PhD defense – Spintronic devices with reduced content of Platinum and Ruthenium [May 29th, 2022]
    On Tuesday, June 7th at 14:00, M. Alvaro PALOMINO will defend his PhD thesis entitled: Spintronic devices with reduced content of Platinum and Ruthenium Place : CEA Bat. 10.05 Room 445 Zoom link https://univ-grenoble-alpes-fr.zoom.us/j/9618654716?pwd=MFNPYXRyU1N0R282d3lOYUovWm1HQT09 See access conditions at the end Abstract ...
  • Designing magnetic memory with improved retention and writability [April 08th, 2022]
    Magnetic Random Access Memory recently started to be commercialized by all main microelectronics factories. In MRAM, the information is coded via parallel or antiparallel magnetic configurations to represent ones and zeroes. The technology is intrinsically ...
  • STOCHNET – An ANR project [December 09th, 2021]
    STOCHNET stands for Hybrid Stochastic Tunnel Junction Circuits for Optimization and Inference. The motivation behind StochNet is to explore — through experimental demonstrations with hybrid CMOS stochastic tunnel junction circuits and simulations of theoretical ...
  • A new spintronic memristive component for neuromorphic circuits [November 18th, 2021]
    Neuromorphic computing is a bio-inspired technology which aims at mimicking the brain working principles. It can be used for fast and energy-efficient applications through the implementation of networks of artificial neurons and synapses. Artificial synapses ...
  • Introductory Course on Magnetic Random Access Memory (InMRAM 2021) [October 08th, 2021]
    This introductory course aims at helping students, researchers and engineers having little or no background in magnetism to better understand the physics and working principles of this new class of magnetic memory called MRAMs (Magnetic ...

Ricardo SOUSA 029
SOUSA Ricardo
ricardo.sousa@cea.fr

WEB_BALTZ
BALTZ Vincent
vincent.baltz@cea.fr

Lucian Prejbeanu
PREJBEANU Lucian
lucian.prejbeanu@cea.fr

Bernard DIENY
DIENY Bernard
bernard.dieny@cea.fr


Copyright © 2015 - Spintec.fr - OXIWIZ - Privacy Policy

Scroll to Top