ANTIFERROMAGNETIC SPINTRONICS

Overview

Antiferromagnetic materials could represent the future of spintronics thanks to the interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics and generate large magneto-transport effects. In this team, research efforts are being invested in unraveling spin-dependent transport specifities of antiferromagnets. For a review of  the team latest achievements, please follow this talk.

Research topics

Spin and charge transport

Whether spin and charge currents can be injected, transmitted and converted in antiferromagnetic materials, how subsequent variations can be detected, and what is the actual influence of the magnetic order vs. defects are some of the thrilling challenges being addressed, whether it be magnons, single electrons or Cooper pairs.

Nanomagnetism

To what extent and how the magnetic properties of antiferromagnetic materials shall and can be adjusted for use as functional materials in spintronic applications are some of the questions addressed in this activity, whether it be interfacial spin structures or spin textures like skyrmions.

Sub-THz dynamics

How sub-THz dynamics of antiferromagnets can promote spin pumping, and with what efficiency with respect to the damping parameter and to the transfer of angular momentum from the antiferromagnet are some of the exciting challenges addressed in this activity.

The team

Former members

Post-docs

  • Olga Gladii, 2017-2019, now Post-Doctoral research fellow at HZDR – Germany
  • Guillaume Forestier, 2016-2018, now R&D Engineer at ST-Microelectronics  – France

PhD

  • Miina Leiviskä, 2020-2023, now Post-Doctoral fellow at FZU – CZ
  • Floris van Duijn, 2020-
  • Rafael Lopes Seeger, 2018-2021, now Post-Doctoral fellow at C2N – France
  • Lamprini Frangou, 2014-2017, now RUser Researcher at Pictarine – France
  • Pablo Merodio also theory group, 2011-2014, now Research Associate Professor at Universidad Politécnica de Madrid – Spain
  • Kamil Akmaldinov, 2011-2015, now R&D Engineer at Crivasense technologies – France

Internships

  • Laxman Nagi Reddy, 2020
  • Rafael Lopes Seeger, 2018
  • Jolan Barbançon, 2016
  • Lamprini Frangou, 2014
  • Nicolas Mante, 2011
  • Safeer Chenattukuzhniyil aka. C. K. Safeer, 2011
  • Marthe Chamfrault, 2010

Projects

  • SUPERFAST, ANR PRC, 2022-2026
  • MATHEEIAS, ANR-DFG PRCI, 2020-2024
  • ASK, PHC France-UK, 2021-2022
  • ELSA, CEA exploratoire bottom-up, 2018-2019
  • CRG KAUST / SPINTEC / UTEXAS, 2016-2019
  • ASTRONICS, ANR JCJC, 2015-2018
  • CROCUS Technology, 2012-2015

 

Partners

  • Laboratoire IRIG/SYMMES/RICC, S. Gambarelli, Grenoble, France
  • Unité mixte CNRS/Thales, R. Lebrun, Paris, France
  • Laboratoire national des champs magnétiques intenses LNCMI, Anne-Laure Barra, Grenoble, France
  • Laboratoire IRAMIS/SPEC/LNMO, M. Viret, J. B. Moussy, Gif-sur-Yvette, France
  • Laboratoire Charles Coulomb L2C, V. Jacques, Montpellier, France
  • Centre interdisciplinaire de nanoscience de Marseille CINAM, L. Michez, A. Manchon, France
  • TU Dresde / Uni. Constance, S. Goennenwein, H. Reichlova, Germany
  • Johannes Gutenberg University JGU, L. Smejkal, J. Sinova, H. Gomonay, Mayence, Germany
  • Fritz Haber Institute FHI, T. Kampfrath, Berlin, Germany
  • The University of York, R. L. Evans, S. Jenkins, UK
  • Catalan Institution for Research ICREA, J. Sort, Barcelona, Spain
  • Laboratoire de physique des solides LPS, A. Mougin, Orsay, France
  • Laboratoire d’optique et de magnétisme de Bretagne OPTIMAG, D. Spenato, Brest, France
  • King Abdullah University of science and technology KAUST, A. Manchon, Thuwal, Saoudi Arabia
  • Groupe de physique des matériaux GPM, L. Lechevallier and D. Ledue, Rouen, France
  • CROCUS Technology, Grenoble, France

Recent news

  • Book – The basics of electron transport in spintronics: textbook with lectures, exercises and solutions (May 26th, 2023)Book – The basics of electron transport in spintronics: textbook with lectures, exercises and solutions
    Book – The basics of electron transport in spintronics: textbook with lectures, exercises and solutions V. Baltz, EDP Sciences Here is the ideal book to grasp the basic concepts of spin-dependent electron transport and to develop a ...
  • Seminar – Synthetic Antiferromagnets and Skyrmions (April 20th, 2023)Seminar - Synthetic Antiferromagnets and Skyrmions
    On Tuesday, April 25th 2023, we have the pleasure to welcome in SPINTEC Christopher Barker from Leeds University. He will give us a seminar at 11:00 entitled : Synthetic Antiferromagnets and Skyrmions Place : CEA Building 10.05 ...
  • Portrait – Miina LEIVISKA, PhD researcher at SPINTEC [In English] (March 16th, 2023)Portrait - Miina LEIVISKA, PhD researcher at SPINTEC [In English]
    Miina Leiviska is a PhD researcher at SPINTEC. Her work concerns antiferromagnetic spîntronics, with a fundamental focus but with technological prospects. Her portrait was made by l’Institut de Recherche Interdisciplinaire de Grenoble, to which SPINTEC ...
  • Superfast – An ANR project (January 01st, 2023)Superfast - An ANR project
    Suferfast is an ANR project, with title Exploiting specificities of d-wave superconductivity for ultrafast dynamic coupling with magnetism (ANR-22-CE30-0020-01). SUPERFAST aims at demonstrating novel spin transport and ultrafast dynamics coupling effects in heterostructures combining magnetic ...
  • Spin-transport in antiferromagnets from the GHz to THz regime (December 12th, 2022)Spin-transport in antiferromagnets from the GHz to THz regime
      Control over spin transport in antiferromagnetic systems is essential for future spintronic applications with operational speeds extending to ultrafast time scales. A consortium of physicists at SPINTEC, JGU Berlin and Charles University Prague established the ...

Publications


Copyright © 2015 - Spintec.fr - OXIWIZ - Privacy Policy

Scroll to Top