THEORY / SIMULATION



Research team Theory/Simulation, within the Concepts group


You find here the list of proposals for Master-2 internships to take place at Spintec during Spring 2021. In most cases, these internships are intended to be suitable for a longer-term PhD work. Interested Master-1 students are also encouraged to apply, as well as students not phased for a Spring internship. You may download the […]

Read more

The intense recent research on skyrmions has focused on multilayers of classical magnetic materials (Co, CoFeB, Fe…). In this work, the authors explore skyrmions in van der Waals bi-dimensional magnets, a new type of magnetic material in the broad family of 2D materials. Using ab initio and Monte Carlo calculations, they demonstrate that skyrmions should […]

Read more

Magnetic skyrmions are topologically protected spin textures of great interest for nanoscale information storage and processing. However, stabilizing small skyrmions without applying an external magnetic field remains challenging. This study employs a thin ferromagnetic layer exchange-biased by an antiferromagnetic film to stabilize ferromagnetic skyrmions down to 30 nm in diameter, at zero magnetic field. In […]

Read more

Our colleague Mairbek Chshiev, professor at the University Grenoble Alpes, was appointed Senior Member of the Institut Universitaire de France (IUF) beginning from October 1, 2020 for a period of five years. The IUF distinguishes each year a small number of university professors for their research excellence and international recognition, providing theses members additional support […]

Read more

Topological insulators (TI) represent a new class of insulating materials hosting metallic surface states. Moreover, those surface states exhibit a Dirac cone energy dispersion where the strong spin-orbit coupling leads to a helical spin texture at the Fermi level. This property can be exploited to detect spin currents in conventional semiconductors like silicon or germanium. […]

Read more

This work reports the development of perpendicular magnetic tunnel junctions incorporating a stack of Tb/Co nanolayers whose magnetization can be all-optically controlled via helicity-independent single-shot switching. Toggling of the magnetization of the Tb/Co electrode was achieved using either 60 femtosecond-long or 5 picosecond-long laser pulses, with incident fluences down to 3.5 mJ/cm2. Ever since the […]

Read more

daniel.solis.lerma

On Wednesday May 13, 2020 at 14h Daniel SOLIS LERMA from SPINTEC will defend his PhD thesis entitled : Proximity-induced transport phenomena in graphene-based spintronic devices Place : the defense (public) will take place by video-conference. Contact us to have the link (mair.chshiev@cea.fr) Abstract: In this thesis we present a study of transport properties of […]

Read more

MRAM is a type of nonvolatile memory that stores the binary information through the magnetic configuration of its main building block: the Magnetic Tunnel Junction (MTJ). In the last decade, the use of perpendicular anisotropy existing at the tunnel barrier interface, allowed to improve MRAM manufacturability. However, the thermal sensitivity of the interfacial anisotropy is […]

Read more

Spin accumulation phenomena frequently occur in spintronic devices due to the difference of electrical resistivities of spin-up and spin-down electrons in magnetic materials. They are balanced by spin relaxation phenomena. These phenomena take place in a diffusive regime which involves numerous individual scattering events. Consequently, although the time scale of elastic electron scattering in metals […]

Read more

A possibility of controlling electronic and magnetic properties of graphene via proximity of multiferroic substrate is demonstrated. Coupling graphene to a multiferroic oxide (bismuth ferrite) give rise to novel class of spin-dependent transport phenomena based on multiferroic-induced proximity effects in graphene. Based on these findings, a concept of multi-resistive device in lateral geometry is proposed. […]

Read more




Copyright © 2015 - Spintec.fr - Réalisation par OXIWIZ

Scroll to Top