JOURNAL ARTICLES




Recent progress in nanotechnology has led to the development of spin-torque nano-oscillators (STNO), whose time constants, due to their nano-scale size, are naturally of the order of 1-100 nanoseconds. At SPINTEC we demonstrated experimentally for the first time that the use of such STNOs in swept-tuned microwave spectrum analyzers leads to a substantial reduction of […]

Read more

Magnetic spintronic memory called STT-MRAM have recently entered in volume production at major microelectronic foundries. The research in this area is now focused on preparing the future memory generations with higher capacity, higher speed, lower power consumption, wider range of operating temperature. To conduct this type of research, it is important to be able to […]

Read more

We demonstrate in this study a fabrication process that enables the realization of a top transparent conductive electrode of magnetic tunnel junctions (MTJs), building blocks of magnetic random access memories (MRAMs). This work opens up the realization of future and faster nonvolatile memories based on hybrid spintronic photonic circuits. This new process has been electrically […]

Read more

The intense recent research on skyrmions has focused on multilayers of classical magnetic materials (Co, CoFeB, Fe…). In this work, the authors explore skyrmions in van der Waals bi-dimensional magnets, a new type of magnetic material in the broad family of 2D materials. Using ab initio and Monte Carlo calculations, they demonstrate that skyrmions should […]

Read more

Due to its good radiation effects tolerance and its inherent non volatility, Spin-Transfer Torque Magnetic Tunnel Junction (STT-MTJ) is considered as a promising candidate for high-reliability electronics. A radiation tolerant circuit design suitable for space application is proposed in this study. Radiation effects research on semiconductors has been pursued since the 1960s becoming an extremely […]

Read more

Magnetic skyrmions are topologically protected spin textures of great interest for nanoscale information storage and processing. However, stabilizing small skyrmions without applying an external magnetic field remains challenging. This study employs a thin ferromagnetic layer exchange-biased by an antiferromagnetic film to stabilize ferromagnetic skyrmions down to 30 nm in diameter, at zero magnetic field. In […]

Read more

Layered magnetic topological insulators are candidate to unveil novel electronic phases controlled by the magnetization. In MnBi4Te7, we evidenced a transition from an antiferromagnetic to a ferromagnetic-like metamagnetic state, possibly realizing the quantum anomalous Hall regime in ultra-thin films above 1K. 3D topological insulators ideally have an insulating bulk and 2D gapless topological surface states […]

Read more

Topological insulators (TI) represent a new class of insulating materials hosting metallic surface states. Moreover, those surface states exhibit a Dirac cone energy dispersion where the strong spin-orbit coupling leads to a helical spin texture at the Fermi level. This property can be exploited to detect spin currents in conventional semiconductors like silicon or germanium. […]

Read more

We present experimental evidence for coherent long-distance transport of angular momentum inside a non-magnetic dielectric via the coupling to circularly polarized sound waves that exceeds previous benchmarks set by magnon diffusion by orders of magnitude. The vision of spintronics is to use the spin of an electron rather than its charge to allow computers and […]

Read more

This work reports the development of perpendicular magnetic tunnel junctions incorporating a stack of Tb/Co nanolayers whose magnetization can be all-optically controlled via helicity-independent single-shot switching. Toggling of the magnetization of the Tb/Co electrode was achieved using either 60 femtosecond-long or 5 picosecond-long laser pulses, with incident fluences down to 3.5 mJ/cm2. Ever since the […]

Read more




Copyright © 2015 - Spintec.fr - Réalisation par OXIWIZ

Scroll to Top