JOURNAL ARTICLES




N. Thiery, A. Draveny, V. V. Naletov, L. Vila, J. P. Attané, C. Beigné, G. de Loubens, M. Viret, N. Beaulieu, J. Ben Youssef, V. E. Demidov, S. O. Demokritov, A. N. Slavin, V. S. Tiberkevich, A. Anane, P. Bortolotti, V. Cros, and O. Klein, Phys. Rev. B 97, 060409 (2018). N. Thiery, V. V. […]

Read more

T. Brächer, M. Fabre, T. Meyer, T. Fischer, S. Auffret, O. Boulle, U. Ebels, P. Pirro, G. Gaudin, Nano Lett. 17, 7234 (2017) Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect We report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm […]

Read more

This study discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. The possibility to combine ultrathin magnetic and non-magnetic layers allowed creating hetero-structures whose dimensions are smaller than the characteristic lengths of the spin-dependent transport. This has notably led to the discovery of […]

Read more

Spin orbit torques allow to move efficiently DW in tracks made of ferromagnetic/spin Hall effect bilayer. Domain wall (DW) detection is then of great importance. In this letter, we demonstrate a detection method, based on the ability for a ferromagnetic nanowire, in which a DW is pinned, to inject or detect a pure spin current. […]

Read more

GeTe has been predicted to be the father compound of a new class of multifunctional materials: ferroelectric Rashba semiconductors. In that sense, they are expected to display a coupling between spin-dependent k-splitting and ferroelectricity, thus allowing an electrical control of spin-to-charge conversion phenomena in spintronics. This paper reported the epitaxial growth of Fe/GeTe(111) heterostructures by […]

Read more

Germanium is one of the most appealing candidate for spintronic applications, thanks to its compatibility with the Si platform, the long electron spin lifetime and the optical properties matching the conventional telecommunication window. Electrical spin injection schemes have always been exploited to generate spin accumulations and pure spin currents in bulk Ge. Here, we use […]

Read more

Advancing spintronic devices requires using novel 2D materials including graphene with featured properties. In particular, a significant effort has been focused on injecting spins and inducing magnetism in graphene giving rise to emerging field of graphene spintronics. It is demonstrated that robust spin polarization can be induced in graphene via proximity with magnetic insulators including […]

Read more

We have developed arrays of innovative magnetic nanotweezers or “nanojaws” on silicon wafers, by a top-down approach using the fabrication techniques of microelectronics. The mechanical manipulation of micro- and nanometric objects relies on constantly evolving techniques, which are of great interest to the life sciences and biotechnologies. Numerous biomedical studies, either fundamental or applied to […]

Read more

At the interface between the strontium titanate and the lanthanide aluminate forms a 2 dimensional electron system. By using a dynamical spin injection technique, we were able to demonstrate a record conversion yield between spin and charge current in this system, moreover that is tunable in amplitude and sign by an electrostatic gate, a premiere. […]

Read more

We have fabricated large-scale two-dimensional transition metal dichalcogenide (2D TMD) MoSe2, a promising candidate for electronics, valley-spintronics and optoelectronics, on insulating sapphire and have investigated its structural and transport properties. We have shown that the layered MoSe2 exhibits characteristics of a stoichiometric 2H-phase, a van der Waals epitaxy regarding the substrate and we have evidenced […]

Read more




Copyright © 2015 - Spintec.fr - Réalisation par OXIWIZ

Scroll to Top