FACILITIES




T. Brächer, M. Fabre, T. Meyer, T. Fischer, S. Auffret, O. Boulle, U. Ebels, P. Pirro, G. Gaudin, Nano Lett. 17, 7234 (2017) Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect We report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm […]

Read more

A team at SPINTEC in Grenoble has demonstrated thermally stable and electrically switchable Spin Transfer Torque MRAM (STT-MRAM) of diameter down to 4nm. Among the various technologies of non-volatile memories, STT-MRAM gathers a unique combination of assets: non-volatility, write speed (3-30ns), density (4Gbit demonstrated by Hynix/Toshiba), low consumption (a few tens of fJ/write), and very […]

Read more

This study discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. The possibility to combine ultrathin magnetic and non-magnetic layers allowed creating hetero-structures whose dimensions are smaller than the characteristic lengths of the spin-dependent transport. This has notably led to the discovery of […]

Read more

The stiffening of the perpendicular magnetic tunnel junction (pMTJ) stack resulting from the W insertion due to its very high melting temperature, is the key mechanism behind the extremely high thermal robustness. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode of pMTJ stack highly robust against annealing up to […]

Read more

Spin orbit torques allow to move efficiently DW in tracks made of ferromagnetic/spin Hall effect bilayer. Domain wall (DW) detection is then of great importance. In this letter, we demonstrate a detection method, based on the ability for a ferromagnetic nanowire, in which a DW is pinned, to inject or detect a pure spin current. […]

Read more

Germanium is one of the most appealing candidate for spintronic applications, thanks to its compatibility with the Si platform, the long electron spin lifetime and the optical properties matching the conventional telecommunication window. Electrical spin injection schemes have always been exploited to generate spin accumulations and pure spin currents in bulk Ge. Here, we use […]

Read more

We have developed arrays of innovative magnetic nanotweezers or “nanojaws” on silicon wafers, by a top-down approach using the fabrication techniques of microelectronics. The mechanical manipulation of micro- and nanometric objects relies on constantly evolving techniques, which are of great interest to the life sciences and biotechnologies. Numerous biomedical studies, either fundamental or applied to […]

Read more

We have fabricated large-scale two-dimensional transition metal dichalcogenide (2D TMD) MoSe2, a promising candidate for electronics, valley-spintronics and optoelectronics, on insulating sapphire and have investigated its structural and transport properties. We have shown that the layered MoSe2 exhibits characteristics of a stoichiometric 2H-phase, a van der Waals epitaxy regarding the substrate and we have evidenced […]

Read more

Magnetic field mapping techniques have continuously been developed due to the necessity for determining the spatial components of local magnetic fields in many industrial applications and fundamental research. Several factors are considered for sensors such as spatial resolution, sensitivity, linear response, required proximity to the sample, as well as the ability to filter noise and […]

Read more

We have demonstrated the spin-to-charge interconversion by Rashba coupling at the interface between two light materials: iron and germanium which is compatible with today’s CMOS technology. This result constitutes the first step towards the fabrication of a spin transistor based on the spin-orbit coupling. The spin-orbit coupling, relating the electron spin and momentum, has long […]

Read more




Copyright © 2015 - Spintec.fr - OXIWIZ - Privacy Policy

Scroll to Top