PUBLICATIONS



Selected publications (2016 onwards)


Cécile Naud, Caroline Thébault, Marie Carrière, Yanxia Hou, Robert Morel, François Berger, Bernard Dieny, Hélène Joisten, Nanoscale Advances, RSC (2020). Cancer treatment by magneto-mechanical effect of particles (TMMEP) is a growing field of research. The principle of this technique is to apply a mechanical force on cancer cells in order to destroy them thanks to […]

Read more

We present experimental evidence for coherent long-distance transport of angular momentum inside a non-magnetic dielectric via the coupling to circularly polarized sound waves that exceeds previous benchmarks set by magnon diffusion by orders of magnitude. The vision of spintronics is to use the spin of an electron rather than its charge to allow computers and […]

Read more

This work reports the development of perpendicular magnetic tunnel junctions incorporating a stack of Tb/Co nanolayers whose magnetization can be all-optically controlled via helicity-independent single-shot switching. Toggling of the magnetization of the Tb/Co electrode was achieved using either 60 femtosecond-long or 5 picosecond-long laser pulses, with incident fluences down to 3.5 mJ/cm2. Ever since the […]

Read more

Electron spin—a fundamentally quantum property—is central to spintronics, a technology that revolutionized data storage, and that could play a major role in creating new computer processors. In order to generate and detect spin currents, spintronics traditionally uses ferromagnetic materials whose magnetization switching consume high amounts of energy. In the April 22, 2020 issue of Nature, […]

Read more

Atsufumi Hirohata, Keisuke Yamada, Yoshinobu Nakatani, Ioan-Lucian Prejbeanu, Bernard Diény, Philipp Pirro, Burkard Hillebrands Spintronics is one of the emerging fields for the next-generation nanoelectronic devices to reduce their power consumption and to increase their memory and processing capabilities. Such devices utilise the spin degree of freedom of electrons and/or holes, which can also interact […]

Read more

MRAM is a type of nonvolatile memory that stores the binary information through the magnetic configuration of its main building block: the Magnetic Tunnel Junction (MTJ). In the last decade, the use of perpendicular anisotropy existing at the tunnel barrier interface, allowed to improve MRAM manufacturability. However, the thermal sensitivity of the interfacial anisotropy is […]

Read more

Spin accumulation phenomena frequently occur in spintronic devices due to the difference of electrical resistivities of spin-up and spin-down electrons in magnetic materials. They are balanced by spin relaxation phenomena. These phenomena take place in a diffusive regime which involves numerous individual scattering events. Consequently, although the time scale of elastic electron scattering in metals […]

Read more

Integrated Circuits (ICs) have to be protected against threatening environmental radiations and malicious perturbations. A large panel of countermeasures have been developed to answer the needs of this challenging field. This work proposes an innovative sensor to detect both photoelectrical injections and thermal perturbations aiming a circuit. This architecture is designated by “Dual Detection of […]

Read more

Relating magnetotransport properties to specific spin textures at surfaces or interfaces is an intense field of research nowadays. Here, we investigate the variation of the electrical resistance of Ge(111) under the application of an external magnetic field. We find a magnetoresistance term that is linear in current density j and magnetic field B, reaching 0.5 […]

Read more

The Hall effect can be extended by inducing a temperature gradient in lieu of electric field that is known as the Nernst effect. After the discovery of the spin Nernst effect, the collection would not be complete without mentioning the valley degree of freedom benchmarked by the observation of the valley Hall effect in transition […]

Read more




Copyright © 2015 - Spintec.fr - OXIWIZ - Privacy Policy

Scroll to Top