2D AND SEMICONDUCTOR SPINTRONICS




Transition metal dichalcogenides (MoS2, WSe2, etc.) and topological insulators (Bi2Se3, Bi2Te3) are graphene siblings holding great promise for semiconductor spintronics. They possess an intense spin-orbit interaction that couples the electron momentum and spin. This coupling can be used to manipulate spins with electric fields, to convert charge currents into spin currents, and gives rise to […]

Read more

Nanopoly — A FET-OPEN project

NANOPOLY proposes a ground-breaking yet cost effective method to extend our control over impedance and parasitic phenomena in monolithic circuit components by independently tuning electric permittivity and magnetic permeability of the integrated layers to values far beyond what nature can provide. This approach will re-define all components used in existing analogue circuit design regardless of […]

Read more

Tocha for Dissipationless topological channels for information transfer and quantum metrology, is a Research and Innovation Action FETPROACTIVE project funded by the European Commission. The goal of TOCHA, a five years project head by Sergio O. Valenzuela from ICN2, Barcelona, and for which Spintec is partner, is to develop the next generation of topological devices […]

Read more

You find here the list of proposals for Master-2 internships to take place during Spring 2019. In most cases, these internships are intended to be suitable for a longer-term PhD work. Interested Master-1 students are also encouraged to apply. You may either download the full list of proposals, along with an introduction to the SPINTEC […]

Read more

MAGICVALLEY – An ANR project

MAGICVALLEY stands for MAGnetism InduCed VALLEY polarization in large scale 2D materials (2018-2022). Objectives In the monolayer limit, two dimensional (2D) transition metal dichalcogenides (2H-MX2, with M=Mo, W and X=S, Se) are semiconductors with a sizeable (1-2 eV) and direct electronic bandgap as well as (degenerate) valleys at the K+/K- corners of the Brillouin zone. […]

Read more

This study discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. The possibility to combine ultrathin magnetic and non-magnetic layers allowed creating hetero-structures whose dimensions are smaller than the characteristic lengths of the spin-dependent transport. This has notably led to the discovery of […]

Read more

You find here the list of proposals for Master-2 internships to take place during Spring 2018. In most cases, these internships are intended to be suitable for a longer-term PhD work. Interested Master-1 students are also encouraged to apply. You may either download the full list of proposals, along with an introduction to the SPINTEC […]

Read more

Spin orbit torques allow to move efficiently DW in tracks made of ferromagnetic/spin Hall effect bilayer. Domain wall (DW) detection is then of great importance. In this letter, we demonstrate a detection method, based on the ability for a ferromagnetic nanowire, in which a DW is pinned, to inject or detect a pure spin current. […]

Read more

Germanium is one of the most appealing candidate for spintronic applications, thanks to its compatibility with the Si platform, the long electron spin lifetime and the optical properties matching the conventional telecommunication window. Electrical spin injection schemes have always been exploited to generate spin accumulations and pure spin currents in bulk Ge. Here, we use […]

Read more

At the interface between the strontium titanate and the lanthanide aluminate forms a 2 dimensional electron system. By using a dynamical spin injection technique, we were able to demonstrate a record conversion yield between spin and charge current in this system, moreover that is tunable in amplitude and sign by an electrostatic gate, a premiere. […]

Read more




Copyright © 2015 - Spintec.fr - OXIWIZ - Privacy Policy

Scroll to Top