The PTA, Upstream Technological Platform, is a 1000 class clean room resulting from the pooling of technical and human resources of IRIG (Institut de recherche interdisciplinaire du CEA Grenoble) and LTM (Laboratoire des Technologies de la Microélectronique du CNRS, UJF et INP). The clean room extends over 700 m2, 350 m² on CEA site and 350 m² in the Grenoble INP site, within the CIME clean room ( InterUniversity MicroElectronics and nanotechnologies Centre).
The PTA offers the technical capabilities needed to cover a wide range of projects in nanosciences andmicro- nanotechnologies: complementary methods and equipment facilities for lithography, deposition or etching enable reliable integration of nano-objects and nano-materials or patterning of thin layers in the nanometric range. The PTA can accommodate all types of substrates from small 5 x 5 mm² sample up to the 100 mm wafers. A huge diversity of materials can be processed within a reasonable approach of contamination management
The research fields are numerous: nanoelectronics, MEMS & NEMS, magnetism and spintronics, integration of nano-materials and nano-objects, photonics, … The purpose of the facility is both to provide the needed means and skills to researchers, and to welcome industrial companies looking for a place to develop theirprojects.
Flexibility, ease of access and use, are the cornerstone of the management of the PTA. This pooling of facilities between the major players of upstream research in Grenoble means that a specific management system had been set up combining INAC and LTM complementary views and needs: here, users will find both a state of the art facility and an optimal flexibility.
The Team
Recent news
- Highly Efficient Spin-to-Charge Current Conversion in Strained HgTe Surface States Protected by a HgCdTe Layer (October 03rd, 2018)
We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact ... - Sub-10nm thermally stable Perpendicular Shape Anisotropy magnetic memory (August 24th, 2018)
A new concept of thermally stable and electrically switchable Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM) scalable to diameter down to 4nm was proposed and demonstrated. By dramatically increasing the thickness of the storage ... - Nonlinear properties of pure spin conductors (June 21st, 2018)
N. Thiery, A. Draveny, V. V. Naletov, L. Vila, J. P. Attané, C. Beigné, G. de Loubens, M. Viret, N. Beaulieu, J. Ben Youssef, V. E. Demidov, S. O. Demokritov, A. N. Slavin, V. S. ... - Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect (June 21st, 2018)
T. Brächer, M. Fabre, T. Meyer, T. Fischer, S. Auffret, O. Boulle, U. Ebels, P. Pirro, G. Gaudin, Nano Lett. 17, 7234 (2017) Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse ... - Sub-10nm thermally stable Perpendicular Shape Anisotropy STT-MRAM realized at SPINTEC (March 08th, 2018)
A team at SPINTEC in Grenoble has demonstrated thermally stable and electrically switchable Spin Transfer Torque MRAM (STT-MRAM) of diameter down to 4nm. Among the various technologies of non-volatile memories, STT-MRAM gathers a unique combination ...