THEORY / SIMULATION

Overview

The group covers all aspects of fundamental physics related to spin electronics by employing a wide range of theoretical approaches including ab initio, tight-binding, free electron and diffusive methods, combined with micromagnetic simulation approaches based on solution of Landau-Lifshitz-Gilbert (LLG) equation. This allows explaining experimental observations, providing solutions for specific problems and predicting novel properties and phenomena guiding the experimental work to optimize spintronic nanostructures.

Research directions

Electronic structure and magnetic properties of materials from first principles

Ab initio calculations based on DFT are performed in order to provide insights into fundamental mechanisms of various spintronic phenomena, and to propose novel materials and their efficient combinations with required electronic structure and magnetic properties for optimal performance of spintronic devices.

Spin-dependent transport theories

We employ tight-binding, free electron and diffusive approaches including Green function techniques in the framework of Keldysh and Kubo formalisms, in order to describe spin and charge transport properties in magnetic nanostructures with non-collinear magnetic moments in vertical, lateral and complex geometries.

Theoretical concepts for organic and graphene spintronics

The goal of this topic is to harvest theoretically novel spin-dependent properties (e.g. proximity effects and defect induced magnetism etc.) in organic, graphene and related 2D materials based structures in the context of emerging field of graphene spintronics.

Micromagnetic modeling

Magnetization dynamics (macrospin and micromagnetic) simulations under applied magnetic field and/or spin polarized currents are developed to address functionalities of spintronic devices (e.g. magnetization switching, synchronization and modulation for oscillators) in various geometries. Straightforward analytical models are developed to supplement fast and efficient understanding of the magnetization dynamics.

The team

Former members

Post-docs

  • Ali HALLAL (2015-2019)
  • Sergey NIKOLAEV (2015-2017)
  • Debapriya CHAUDHURY (2016-2018)
  • Cristian ORTIZ PAUYAC (2016-2017)
  • Hongxin YANG (2013-2015)

PhD

  • Daniel SOLIS LERMA (2016-2020)
  • Paulo COELHO (with Magnetic Sensors Group, 2014-2017)

Internships

  • Libor VOJACEK (2020)
  • Brian CHARLES (with MRAM Group, 2016)

Projects

  • ANR SpinSpike (2021-2024)
  • ANR UFO (2021-2024)
  • EU H2020 FET Project Flagship “Graphene” Core 3 (2020-2023)
  • ANR MAGICVALLEY (2018-2021)
  • ANR FEOrgSPIN (2018-2021)
  • EU H2020 FET Project Flagship “Graphene” Core 2 (2018-2020)
  • ANR JCJC MATEMAC-3D (2017-2020)
  • EU H2020 ICT Project “SPICE” (2016-2020)
  • EU H2020 ICT Project “GREAT” (2016-2019)
  • ANR ELECSPIN (2016-2019)
  • EU H2020 FET Project Flagship “Graphene” Core 1 (2016-2018)
  • EU FET FP7 Project Flagship “Graphene” (2013-2016)
  • EU M-ERA.NET HEUMEM supported via ANR-DFG (2014-2017)
  • UGA Émergence et partenariat stratégique avec Western Digital (2015-2017)
  • Samsung SGMI (2014-2017)
  • ANR SOSPIN (2013-2016)
  • ANR NMGEM (2010-2015)
  • AGI14SMI15 AGIR (2014-2015)

Partners

  • Transilvania University, Brasov, Romania
  • IRIG/PHELIQS, Grenoble, France
  • Institut Néel, Grenoble, France
  • Unité Mixte Physique CNRS/Thalès, Palaiseau, France
  • Laboratoire de Physique des Solides, Orsay, France
  • Catalan Institute of Nanotechnology, Barcelona, Spain
  • Institut Jean Lamour, Nancy, France
  • Moscow Lomonosov State University, Moscow, Russia
  • King Abdullah University of science and technology, Thuwal, Saudi Arabia
  • University of Puerto Rico, San Juan, PR, USA
  • Western Digital Corporation, CA, USA
  • University of Bielefeld, Germany
  • University of Kaiserslautern, Germany
  • Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
  • Lawrence Berkeley National Laboratory, Berkeley, CA, USA
  • ETH, Zurich, Switzerland
  • NIMTE, Ningbo, China

Recent news

  • Highlights of SPINTEC research in 2020 (December 10th, 2020)Highlights of SPINTEC research in 2020
    The research highlights of SPINTEC over the year 2020 have been put together, and are available to download: http://www.spintec.fr/spintec-annual-booklets. This booklet contains the key facts of the lab over the period (contracts, new staff etc.), the ...
  • PhD defense – Memristive magnetic memory for spintronic synapses (December 07th, 2020)PhD defense - Memristive magnetic memory for spintronic synapses
    On Thursday, December 17, 2020 at 13H30, Marco Mansueto will defend his PhD entitled: Memristive magnetic memory for spintronic synapses Video conference: https://grenoble-inp.zoom.us/j/96102161721 Abstract : In the context ...
  • Masters thesis projects for Spring 2021 (September 15th, 2020)Masters thesis projects for Spring 2021
    You find here the list of proposals for Master-2 internships to take place at Spintec during Spring 2021. In most cases, these internships are intended to be suitable for a longer-term PhD work. Interested Master-1 ...
  • Very large Dzyaloshinskii-Moriya interaction and skyrmions in 2D Janus dichalcogenides (August 13th, 2020)Very large Dzyaloshinskii-Moriya interaction and skyrmions in 2D Janus dichalcogenides
    The intense recent research on skyrmions has focused on multilayers of classical magnetic materials (Co, CoFeB, Fe…). In this work, the authors explore skyrmions in van der Waals bi-dimensional magnets, a new type of magnetic ...
  • Room-Temperature Skyrmions at Zero Field in Exchange-Biased Ultrathin Films (July 17th, 2020)Room-Temperature Skyrmions at Zero Field in Exchange-Biased Ultrathin Films
    Magnetic skyrmions are topologically protected spin textures of great interest for nanoscale information storage and processing. However, stabilizing small skyrmions without applying an external magnetic field remains challenging. This study employs a thin ferromagnetic layer ...

Publications

[ All | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 ]


Copyright © 2015 - Spintec.fr - Réalisation par OXIWIZ

Scroll to Top